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Conjugate natural convection in a
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Abstract—Steady, laminar, natural convection flow in a square enclosure has been analysed numerically.
One vertical wall of the enclosure is thick, with a finite thermal conductivity, while the other three walls
are taken to be of zero thickness. The problem is conjugate and the main focus of the study is on examining
the effect of conduction in the wall on the natural convection flow in the enclosure. Three separate models
to account for the wall conduction are investigated : (i) the complete conjugate case in which conduction
in the thick vertical wall is assumed to be fully two-dimensional ; (ii) a one-dimensional model in which
conduction in the wall is assumed to be in the horizontal direction only; and (iii) a lumped parameter
approach which assumes the solid—fluid interface temperature to be uniform. A Boussinesq fluid with
Prandtl number of 0.7 (air) and Grashof numbers ranging from 10° to 107 are considered. For Grashof
number > 10°, the temperature distribution in the wall shows significant two-dimensional effects and the
solid—fluid interface temperature is found to be quite non-uniform. This non-uniformity tends to make the
flow pattern in the enclosure asymmetric. In the parametric range investigated, all three models predict
nearly the same value for the overall heat transfer.
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INTRODUCTION

The problem analysed

Steady, laminar, natural convection flow in a square
enclosure has been analysed. The configuration is
sketched in Fig. 1. Three walls of the enclosure are
assumed to be of zero thickness while the fourth, the
right vertical wall, has a thickness z. The horizontal
walls are insulated, the left vertical face is at a uniform
temperature T, and the right edge is isothermal at a
temperature 7). The problem is conjugate and the
goal of the analysis is to solve numerically for the
natural convection flow in the enclosure taking
account of the conduction in the right vertical wall.

Motivation

Natural convection in enclosures is a topic of con-
siderable engineering interest. Applications range
from thermal design of buildings, to cryogenic
storage, furnace design, nuclear reactor design, and
others. Several comprehensive reviews of the literature
have been published [1-3].

The problem of natural convection flow in a rec-
tangular enclosure with uniform temperature at the
side walls and insulated top and bottom walls has
been the subject of many earlier studies. Elder [4, 5]
performed a comprehensive set of flow visualization
experiments which delineated the flow regimes for this
geometry. Early numerical studies were published by

*Present address: CHAM of North America, Inc.,
1525-A Sparkman Drive, Huntsville, AL 35805, U.S.A.

Wilkes [6], followed by Gershuni ez al. [7] and de
Vahl Davis [8]. Recently, Jones [9] has published a
very detailed comparison of experimental and numeri-
cal results ; in all cases, the agreement between the two
is very good, validating the numerical methods of
studying this type of problem.

In the studies cited above, the walls of the enclosure
are assumed to be of zero thickness and conduction
in the walls is not accounted for. However, in many
practical situations, especially those concerned with
the design of thermal insulation, conduction in the
walls can have an important effect on the natural
convection flow in the enclosure ; it is this recognition
that constitutes the motivation for the present study.

Literature on conjugate problems is sparse. The
configuration discussed in this paper has been studied
before by Lauriat [10]; in fact, in terms of Lauriat’s
work, the present study correspondsto 4 =1, N, = 0,
and B, = oo. The essential differences in the two inves-
tigations are : (i) the one-dimensional wall conduction
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F1G. 1. Schematics of the problem analysed.
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specific heat of the fluid

Gr  Grashof number, gf(Ty— Tc)L*/v?

g acceleration due to gravity

k thermal conductivity of the fluid

k., thermal conductivity of the solid wall
length of side of the square enclosure
overall Nusselt number, Q/k(Ty— T¢)
dimensionless pressure, (p+ pgy)/p(v/L)?
Prandtl number of the fluid, uc,/k
pressure

total heat transfer across the enclosure
local heat flux

thickness of the solid wall

temperature

temperature of the left vertical side
temperature of the right vertical side

NOMENCLATURE

U,V dimensionless velocity components,
u/(v/L), v/(v/L)

u,v  velocity components

X, coordinates

X,Y dimensionless coordinates, x/L, y/L.

Greek symbols

B coefficient of thermal expansion of the
fluid
0 dimensionless temperature,

(T=TITu—Tc)

u viscosity of the fluid

v kinematic viscosity of the fluid

p density of the fluid

Vmax maximum value of the streamfunction in
the enclosure.

model has been included in the present work for com-
parison; (ii) the variation of local heat flux at the
solid—fluid interface has been examined; and (iii) a
higher range of the Grashof number was investigated.

The effect of wall conduction on natural convection
flow in an enclosure has also been examined by
Balvanz and Kuehn [11]. They considered the case
of volumetric heat generation within the wall, and the
outer face of the thick wall was taken to be insulated.
Larson and Viskanta [12] accounted for wall con-
duction effects in an enclosed fire problem. Only one-
dimensional wall conduction was considered. In both
of these studies, the problem definition and boundary
conditions are different from those investigated in the
present study.

More recently, Kim and Viskanta [13-15] have
carried out a comprehensive experimental and numerical
study of natural convection flow in an enclosure with
conducting walls. They examined the case in which
all four walls are conducting. Hence, their problem
is different than the one investigated in this paper. In
the present study, the choice to restrict to only one
thick wall is intentional, the goal being to examine a
simple effect in isolation; the numerical procedure
used can, however, as easily handle the case in which
all four walls are conducting.

The effect of wall conduction on natural convection
in slots has also been examined by Mallinson [16].
Mallinson’s study involves a three-dimensional slot,
with the wall parallel to the plane of Fig. 1 being thick.
In addition, the periodic boundary conditions are
intended to simulate the case of a series of slots sep-
arated by thick wall partitions.

ANALYSIS

Assumptions
The flow in the enclosure is assumed to be two-
dimensional with velocity components # and v along

the x and y coordinates, respectively (see Fig. 1). All
fluid properties are assumed constant, and the fluid is
considered to be incompressible except for the buoy-
ancy term which is computed using the Boussinesq-
type equation of state. Viscous dissipation and com-
pression work are neglected in the energy equation
and so are the radiation effects.

Equations for the fluid part of the enclosure

In terms of dimensionless variables which are
defined in the nomenclature, the flow is governed by
the following set of conservation equations

UL vy 1
ax tor™ O

oU aU oP .
U(a,>+ V<6~Y>= —m VU ©

1% ov oP ,
U(—a—i> + V(a—Y) = -3y TGOV (3

00 80 1\,
U(a—X> + V(ﬁ) = (E>V 6. @)

As for the boundary conditions, both the velocity
components are zero at the walls. The dimensionless
temperature 6 is equal to zero at the left vertical wall
while 60/0Y = 0 at the top and the bottom horizontal
walls.

The complete conjugate case with two-dimensional wall
conduction

In a complete analysis, the two-dimensional tem-
perature distribution in the wall is governed by the
heat conduction equation which, in dimensionless
form, reads

Vi =0. %)
At the right vertical edge, § = 1. At the solid—fluid
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interface, the temperature and the heat flux must be
continuous. The latter condition is mathematically
expressed as

00 k, (06
— =2 = = 1. 6
(6X>ﬂuid k <aX>wall atx ( )

Equations (1)-(4), which determine the flow, are,
therefore, coupled to equations (5) and (6) which de-
scribe the two-dimensional conduction in the wall.

One-dimensional wall conduction model

In the more commonly used one-dimensional wall
conduction model, it is assumed that the heat flow in
the wall is in the horizontal (x) direction only. This
treatment can be mathematically described by saying
— k(0T /0X)quiq = ko(T— Ty)/t, at the solid—fluid inter-
face. In dimensionless terms this reads

29 koL ~
(&) ()0 wx=1 o

The advantage of using this model is that one does
not have to solve any heat conduction equation in the
wall; that is, only the flow equations, equations (1)-
(4), are to be solved, and the effect of wall conduction
is implied through the boundary condition expressed
by equation (7) which is imposed at X = 1. This can
provide a considerable saving in the computational
effort.

Lumped parameter approach

The lumped parameter method* may be used to
estimate the total heat transfer across the enclosure.
Implicit in this treatment is the assumption that the
solid-fluid interface is at a uniform temperature T.. If
this is the case, then the fluid is driven by an effective
Grashof number Gr given by

_gB(T—TOL? (T,=To)
v2

Gre (Tu-To)

= Grf, = Gr @)

Let Q represent the total heat flux across the enclos-
ure. Then:

Q = hcL(Ti—T¢) )

where hc is obtained using a standard correlation
for an enclosure consisting of two isothermal vertical
walls. A typical expression would be

hcL

Nuc = CT = a(Gr¢)’ = aGrg? (10)
a and b being the constants in the correlation used.

The same heat flux Q must flow across the solid

wall. Hence

k., K
¢

Q=—Tu-T) an

* Also referred to as the thermal resistance model [10].

1981

Eliminating 7; between equations (9) and (11), the
overall Nusselt number Nu can be obtained as

kt 1
1/ (kwL + N—uc> (12)

Also, eliminating Q between equations (9) and (11) it

i Uc ) [

Thus, the coupled equations (13) and (10) must be
solved iteratively to obtain Nuc and 6;. Once Nuc has
been obtained, the overall Nusselt number can be
calculated from equation (12).

The constants ¢ and b to be used in correlation (10)
are available in the literature. However, for numerical
consistency, the values used were those which were
generated by the present computations for the limiting
case of the standard enclosure. These values are:
a = 0.1556 and b = 0.2843.

(Q/L)y L
M= T —To k

13)

Implications of the three wall conduction models

The difference between the three conduction models
can be looked at in the following manner. Imagine the
wall has different thermal conductivity (k,), and (k,),
in the x and y directions, respectively. Then, the impli-
cations of the three wall conduction models are:

two-dimensional model (ko). = ko), =k,

(k) =ku; (ky), =0
lumped parameter approach (k,), = ky; (ky), = o©.

one-dimensional model

The difference in the results obtained by the three
models can be interpreted well in terms of the above
implications.

Parameters of the problem

The complete conjugate problem, with two-dimen-
sional wall conduction, is governed by four dimen-
sionless parameters. These are the Grashof number
Gr, the Prandtl number Pr, the dimensionless wall
thickness ¢#/L and the conductivity ratio k,/k. The
Prandtl number was kept fixed as 0.7 corresponding
to air. The Grashof number was varied from 10° to
107

For the one-dimensional and the lumped parameter
wall conduction models, ¢/L and k,/k do not appear
as two separate parameters ; instead, they appear only
as one combination k,L/kt. It is expected, therefore,
that even for the complete conjugate analysis, an
appropriate parameter should be k,L/kt. The com-
puted results support this choice; it is indeed found
that for fixed (k,L/k?), the results of even the two-
dimensional wall conduction model depend very
little on ¢/L. The following values were considered :
k,L/kt = 5,25,50 and o, and ¢/L = 0.2 and 0.4.
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COMPUTATIONAL PROCEDURE

The governing equations were solved numerically
using the control-volume-based finite-difference
method described by Patankar [17]. The application
of the method to handle conjugate problems has been
discussed in ref. [17] and, at greater length, in ref. [18].
The basic idea is to solve for the flow in the enclosure
and the conduction in the wall simultaneously. This
is achieved by taking the computational domain to
include both the fluid and the solid regions. In the
solid, the viscosity is assigned a very large value which
makes the velocity zero there. The grid layout is such
that the solid—fluid interface forms a control volume
face for the neighboring grid points. Correct
expressions for the heat flux (or, for the shear stress)
across this interface are obtained by using the har-
monic mean of the solid and fiuid thermal con-
ductivities (or, the harmonic mean of the viscosities).

An exponential differencing scheme is employed in
the fluid. This reduces to the central difference type
scheme in the solid where all the velocities are zero.
Because of the nonlinearity of the momentum equa-
tions, the velocity—pressure coupling, and the coupling
between the flow and the energy equation, an iterative
solution scheme is necessary. In the present study the
SIMPLER algorithm [17] was employed.

To obtain convergence at very high Grashof num-
bers, special under-relaxation procedures are necess-
ary. In the present study, the inertial relaxation
method of Ideriah [19] was used. A detailed summary
of the effect of various underrelaxation parameters on
the number of iterations required for convergence has
been provided in ref. [20].

A 40 x 30 grid was used in all the computations. Of
the 40 vertical grid lines, a disproportionate share of
10 grid lines were placed in the solid wall. The grid
was packed close to the solid walls and the solid—fluid
interface so that the boundary layer could be well
resolved. The grid layout was chosen after a number
of trial numerical experiments, the results of which
were summarized in ref. [20]. For the case of an infi-
nitely conducting wall, i.e. (k,L/kt) = oo, the grid lay-
out which was finally chosen, yields an overall Nusselt
number, which is within 2% of Caton’s empirical
correlation* in the range (10° < Gr < 10°) and within
6% at Gr = 10"

RESULTS

Streamline and isotherm plots

An appreciation for the nature of the flow and the
temperature fields can be obtained by examining plots
of the streamlines and isotherms. In all the figures
that follow, the maximum value of the dimensionless
streamfunction ¥ ., L?/v is given in the figure captions.
Different streamlines correspond to 0, 0.1y, L%/v,

* Nu = 0.15(Gr)**.
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0.2/ max LH/¥, 0.3 0 L?/v, etc. and different isotherms
correspond to # =0,0.1,0.2, ..., 1.

Figure 2 shows representative streamlines and iso-
therms for a Grashof number of 10°. Panel (a) rep-
resents a poorly conducting wall and panel (b) rep-
resents an infinitely conducting wall, i.e. the standard
enclosure with two isothermal vertical walls. The
results of panel (a) correspond to a two-dimensional
wall conduction model. The circulation pattern is
counterclockwise, with flow downward at the cold left
wall and upward at the hot right wall. Because of the
temperature drop in the wall, the effective temperature
difference driving the flow in panel (a) is less than that
for panel (b); as a result, the strength of the flow, i.e.
Wmax» 18 less for case (a) than for case (b).

The temperature profile across the solid—fluid inter-
face is quite non-uniform. This non-uniformity has a
noticeable effect on the flow field ; the flow in panel
(a) is asymmetric whereas the flow for the isothermal
walls shown in panel (b) is perfectly symmetric.

Figure 3 shows plots for the highest Grashof num-
ber studied, Gr = 10”. A comparison is made for the
streamlines and isotherms obtained using the two-
dimensional and one-dimensional wall conduction
models. As can be seen, the results for the two cases
are nearly identical, supporting the conclusion that
the one-dimensional approximation is a good sub-
stitute for the two-dimensional conjugate analysis.

Figure 4 also corresponds to Gr = 10”. The effect
of increasing the wall conductivity is examined. As
expected, the two-dimensional wall effects diminish

=

Streamline Plot

-

Fig. 2. Flow and temperature fields for Gr = 10° and

t/L =0.2. Panel (a) corresponds to two-dimensional

wall conduction model with (k,L/k?) =5; and panel (b)

is for isothermal walls [(k,L/kf) = o0]. The maximum

streamfunction, ¥ ,,L%, is 10.4 for panel (a) and 12.6 for
panel (b).

Isotherm Plot
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Streamiine Plot

(a) (b)

=

isotherm Plot

Fig. 3. Filow and temperature fields for Gr =10,

(ko Ljkty =5 and #/L = 0.2. Panel (a) two-dimensional wall

conduction model; ¥, L%/v = 26.7. Panel (b) one-dimen-
sional wall conduction model; ¥, L/v = 26.7.

(compare with Fig. 3, panel a) as the wall conductivity
increases, and the flow tends to become more sym-
metric.

Finally, Fig. S has been prepared to examine the
effect of ¢/L for a fixed value of (k,L/kf). The wall
conduction model is, of course, two-dimensional.

Streamline Plot

(a) (b}

Isotherm Plot

Fi6. 4. Flow and temperature fields for Gr =107 and
t/L = 0.2. Panel (a) is for two-dimensional wall conduction
model with (k,L/k?) = 25, and panel (b) is for isothermal
walls [(k,L/kf) = o0]. The maximum streamfunction,
WmaL?/V is 33.7 for panel (a) and 40.6 for panel (b).

1983
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F1G. 5. Effect of t/L on the flow field. The plots correspond

to Gr = 10° and are for two-dimensional wall conduction

model. The conductance ratio, (k,L/kt) = 5. Panel (a) cor-

responds to #/L = 0.2, and panel (b) to L =04. The

maximum streamfunction ¥, L*/v = 10.4 for panel (a) and
10.3 for panel (b).

There are only slight differences in the streamline and
isotherm plots for the two cases supporting the choice
of (k,Ljkt) as the appropriate non-dimensional par-
ameter for this problem. This conclusion was typical
of all the parametric cases studied in this investigation.

Temperature variation at the solid-fluid interface

The variation of the temperature at the solid-fluid
interface is presented in Fig. 6. The solid curves cor-
respond to the predictions of two- and one-dimen-
sional wall conduction models ; the results for these
cases were too close to be resolved on the scale of
Fig. 6. The dashed curves correspond to the uniform
interface temperature as predicted by the lumped par-
ameter analysis. For the two-dimensional wall con-
duction model, with a prescribed (k,L/k?), the results
corresponding to /L = 0.2 and /L = 0.4 were found
to be very close; hence, the solid curves in Fig. 6
represent both the ¢/L values.

Everything else remaining fixed, the effect of reduc-
ing (k,L/k?) is to decrease the interface temperature.
This is expected; a reduction of (k,L/kt) implies a
poorly conducting wall across which a greater tem-
perature drop must occur.

For the conjugate case, both one-dimensional and
two-dimensional, the interface temperature increases
with the vertical distance. This is expected (recall Fig,.
1 and the streamline plots of Figs. 2-5). The counter-
clockwise rotating fluid becomes cold as it flows down
past the left wall, and hence, it impinges at the bottom
end of the right wall at a lower temperature making
the interface temperature low there ; as the fluid rises
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FiG. 6. Temperature variation

up against the interface gaining heat from the wall,
the temperature, expectedly, increases.

The uniform temperature at the interface as pre-
dicted by the lumped parameter approach can be
understood, as discussed earlier, in terms of an implied
infinite conductivity in the y direction. This uniform
temperature appears, from Fig. 6, to be ‘some sort of
an average’ of the non-uniform interface temperature
predicted by the complete conjugate analysis; it is
higher over the bottom half of the interface and lower
in the upper half.

Variation of the heat flux at the solid—fluid interface

The variation of the local heat flux at the solid—fluid
interface is plotted in Fig. 7. The resuits correspond
to the two-dimensional wall conduction model.
Again, the results for ¢/L = 0.2 and ¢/L = 0.4 for a
fixed value of (k,L/kf), were too close to be resolved
on the scale of Fig. 7.

The decrease in the local heat flux with increasing
vertical distance is expected ; it is a consequence of:
(i) growing boundary-layer thickness at the solid—fluid
interface as y increases, and (ii) increasing fluid tem-
perature as the fluid moves up along the wall. The
small decrease in heat flux with decreasing y near
y = 0is a local corner effect.

at the solid—fluid interface.

Comparing Figs. 6 and 7 it can be noted that cases
involving a non-uniform interface temperature lead
to a uniform interface flux and vice versa.

A comparison of the interface heat flux as predicted
by the different wall conduction models is presented
in Fig. 8. The results of the lumped parameter case
correspond to an enclosure which is driven by a
Grashof number, Gr, with an imposed temperature
08 = 0 at the left wall and 6 = 6; at the right wall;
0, being, of course, determined by the lumped par-
ameter analysis. Compared to a conjugate analysis,
the lumped parameter approach predicts a higher
heat flux in the lower portion of the interface and a
lower heat flux in the upper portion. This difference
can be understood from Fig. 6 as being due to the
predicted interface temperature, which is higher for
the lumped parameter case in the bottom portion
of the interface, and lower in the upper part.

The difference between the two-dimensional and
the one-dimensional conjugate analyses lies in the fact
that the former permits heat conduction in the wall in
the y direction whereas the latter does not. As already
noted, the temperature in the wall is increasing in the
y direction. Hence, in a two-dimensional model, there
must be a heat flow in the wall in the negative y
direction which is expected to add onto and increase
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Fi1G. 7. Variation of the local heat flux at the solid-fluid interface. Results of the two-dimensional wall
conduction model.

the interface flux near the bottom of the interface. As
a result, it is expected that the local heat flux predicted
by the two-dimensional model should be higher than
that predicted by the one-dimensional model in the
lower part of the interface, and smaller in the upper
part. This is precisely what is predicted by the results
shown in Fig. 8. The actual magnitude of the differ-
ence is, however, small.

20.00
— two-~dimensional model
15.00 - one-dimensional modet
= : iumped parameter approach
IC
[
1
= 1000F
=
-
o
5.00
0.00

F1G. 8. Comparison of the local heat flux at the solid—fluid
interface as predicted by different models ; Gr = 10°,

Overall heat transfer results

The main quantity of practical interest is the total
heat transfer Q across the enclosure. The total heat
transfer may be expressed in terms of the average
Nusselt number, given by

oL L Q

Nu=——Sr o X (14)
(Tu—Tc) kb k(Ty—T¢)
5 two-d model with t/L = 0.2
1x10° and t/L = 0.4, and one-d mode!
ZE ————— lumped parameter approach
o+
of
NU
1x10'|
8L
of
A /
2/-"'""——'
o NN |
1 2 4 6 8 . 2 4 6 8
1x10° 1x10° 13107
GR
F1G. 9. Variation of the overall Nusselt number with Grashof
number.
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Table 1. Variation of the overall Nusselt number

koL Two-dimensional wall conduction One-dimensional Lumped
Gr m t/iL =02 t/L =04 wall conduction parameter

10° 5 0.87 0.87 0.87 0.84
25 1.02 1.02 1.02 1.01
50 1.04 1.04 1.04 1.04
© 1.06 1.06 1.06 1.07
10° 5 2.08 2.08 2.08 2.05
25 342 3.41 3.41 3.36
50 3.72 3.71 3.71 3.67
o0 4.08 4.08 4.08 4.05
10° 5 2.87 2.87 2.87 2.77
25 5.89 5.88 5.89 5.65
50 6.81 6.80 6.81 6.56
0 7.99 7.99 7.99 7.86
5x10° 5 3.35 3.35 3.35 3.25
25 8.07 8.06 8.07 7.76
50 9.86 9.85 9.85 9.53
o0 12.50 12.50 12.50 12.52
107 5 3.53 3.53 3.53 343
25 9.08 9.06 9.08 8.76
50 11.39 11.38 11.39 11.07
o0 15.09 15.09 15.09 15.29

For the one-dimensional and two-dimensional wall
conduction models, Nu is obtained by the numerical
integration of the local heat flux values; for the
lumped parameter approach, Nu is obtained using
equation (12).

Recall Fig. 8 in which the variation of local heat
flux at the interface has been plotted. The overall
Nusselt number Nu is merely the integral of the local
heat flux with y (area under the curves). As can be
seen, though the different models predict different
local heat flux values, there is a trade-off in the integral
sense—i.e. models which predict smaller values of the
heat flux in the lower part of the interface yield higher
values in the upper part and vice versa. Therefore, it
may be expected that overall Nusselt number Nu
should be close for the three different models. This
expectation is confirmed by Fig. 9 in which the vari-
ation of Nu with Gr has been plotted. The solid curves
represent the results of the two-dimensional model
with ¢/L = 0.2 and ¢/L = 0.4 and the one-dimensional
model (the differences being too small to be resolved
on the scale of Fig. 9), and the dashed curves cor-
respond to the lumped parameter approach. The
numerical values of Nu are also listed in Table 1. As
may be noted, the overall Nusselt number is predicted
quite accurately by the one-dimensional model. In
comparison, the lumped parameter model gives a
slight under-prediction, but the difference is small
(£3-4%).*

These overall Nusselt number predictions provide

* The reader is warned that in the earlier version of this
paper [21] the Gr = 107 results were not fully converged.

the most important result of the present study; it is
interesting to find that despite their different physical
implications, the overall heat transfer values are pre-
dicted quite well by the three different wall conduction
models.

Consider the case of k,L/kt = oo in Table 1. The
values listed for the two-dimensional and one-dimen-
sional models are those which were obtained by
the numerical computations. From these values, a
Nu ~ Gr correlation was obtained using the least-
squares fit method. The correlation so obtained gave
Nu = 0.1556 Gr*>**%, This correlation was then used
to process the lumped parameter analysis. It is for this
reason that the Nu values for k,L/kt = co case are
slightly different for the lumped model as compared
to the one-dimensional and two-dimensional models,
i.e. the difference is attributed to process of fitting the
correlation.

It would have been desirable to develop a cor-
relation for Nu as a function of Gr, kw/k and t/L,
etc. This has not been done since the lumped model
analysis agrees so well with the results of the complete
conjugate case.

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER WORK

The present paper has dealt with a very basic
conjugate natural convection heat transfer problem.
Three different models to account for wall conduction
have been examined: (i) the complete two-dimen-
sional conjugate analysis; (ii) the one-dimensional
wall conduction model; and (iii) the ‘zeroth’-order
lumped parameter approach. Results show that for
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Gr > 10°, the temperature distribution in the wall is
quite two-dimensional, and the solid—fluid interface
temperature is quite non-uniform. For the parametric
range investigated, the overall heat transfer results of
the three models are found to be quite close despite
the different physical implications of these models.
The local details predicted by the one-dimensional
model are in close agreement with those of the two-
dimensional model. Hence, the one-dimensional and
lumped parameter network approaches are viable,
quick, and economical alternatives to a complete two-
dimensional analysis.

This study can now be extended to account for
conduction in more than one wall. Again, the focus
must be on comparing and identifying simpler one-
dimensional and zero-dimensional type models which
permit computation of important quantities of engin-
eering interest more economically. Extension to three-
dimensional enclosures and other geometries would
be valuable, and so would be transient studies
especially those which delineate the effect of wall con-
duction on flow stability.
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CONVECTION NATURELLE CONJUGUEE DANS UNE ENCEINTE CARREE:
EFFET DE LA CONDUCTION DANS UNE DES PAROIS VERTICALES

Résumé—On étudie numériquement 1’écoulement de convection naturelle stationnaire, laminaire dans une
enceinte carrée. Une paroi verticale est épaisse, avec une conductivité thermique finie, tandis que les trois
autres sont d’épaisseur nulle. Le probléme est conjugué et I’attention est principalement portée sur Peffet
de la conduction dans la paroi sur la convection dans ’enceinte. On étudie trois modéles séparés: (i) le cas
conjugué complet dans lequel la conduction dans la paroi épaisse est supposée bidimensionnelle ; (ii) un
modéle monodimensionnel dans lequel la conduction dans la paroi est supposée étre dans la direction
horizontale seule ; (iii) une approche qui suppose que la température de I'interface solide-fluide est uniforme.
Un fluide de Boussinesq avec un nombre de Prandtl égal 4 0,7 (air) est étudié pour des nombres de Grashof
allant de 10° & 10”. Pour des nombres de Grashof > 10°, la distribution de température dans la paroi montre
des effets bidimensionnels significatifs et la température d’interface solide—fluide est non uniforme. Cette
non uniformité tend & rendre asymétrique la configuration d’écoulement dans la cavité. Dans le domaine
¢tudié, les trois modéles prédisent 4 peu prés la méme valeur pour le transfert thermique global.
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NATURLICHE KONVEKTION IN EINEM RECHTECKIGEN HOHLRAUM

Zusammenfassung—Es ist die stationire, laminare, natiirliche Konvektionsstrémung in einer rechteckigen
Kammer numerisch untersucht worden. Eine der vertikalen Kammerwinde ist vergleichsweise dick bei
endlicher Wirmeleitfihigkeit, wihrend die Wandstirken der anderen drei Kammerwénde vernachléssigbar
sind. Das Hauptaugenmerk der Studie liegt auf der Untersuchung der Auswirkungen, die Leitungseffekte
in der Wand auf Konvektionsstromungen in der Kammer haben. Drei unterschiedliche Modelle werden
vorgestellt um Leitungsvorginge in der Wand zu untersuchen: (1) der Fall, bei dem vollstindige zwei-
dimensionale Wirmeleitung in der dicken senkrechten Wand angenommen wird, (2) ein eindimensionales
Modell, bei dem Leitung nur in horizontaler Richtung angenommen wird, (3) eine Untersuchung mit
konzentrierten Parametern bei der gleichmaBige Grenzflichentemperaturen zwischen Feststoff und Fluid
vorausgesetzt werden. Ein Boussinesq-Fluid mit einer Prandtl-Zahl von 0,7 (Luft) und Grashof-Zahlen im
Bereich von 10° bis 107 wurde verwendet. Bei Grashof-Zahlen gréBer als 10° traten typische zwei-dimen-
sionale Temperaturverteilungen in der Wand auf, bei der die Grenzfldichentemperatur zwischen Festkorper
und Fluid recht uneinheitlich war. Diese Ungleichformigkeit ruft woh! die asymmetrische Stromungsform
in dem Hohlraum hervor. Im untersuchten Parameterbereich liefern alle drei Modelle nahezu den gleichen
Wert fiir den Gesamtwarmeiibergang.

COITPSI)KEHHAS TTOCTAHOBKA 3AJIAYU O ECTECTBEHHON KOHBEKLIMU B
MPSIMOYTI'OJILBHOM 3AMKHYTOM OBBEME: DO®EKT TEIJIOIIPOBOJIHOCTH OJHON
U3 BEPTUKAJIbHBIX CTEHOK

ARHoTamMs—YHCIIEHHO aHAJIM3UPYETCH YCTOHYMBAS JIAMHHAPHAS €CTECTBEHHAs KOHBEKLHS B NPAMOY-
roiabHoM o6beMe. OnHa BEPTHKAJIbHAS CTEHKA MOJOCTH TOJICTAsA, MMEIOLIAs KOHEYHOE 3HAYCHHE TEMIo-
NpPOBOAHOCTH, B TO BpeMs KaK TOJIUMHBI TPeX OCTaJbHBIX CYMTaioTCA HyneBbIMH. OCHOBHas llefb
COMPSAXEHHOMH NOCTAHOBKH 3aJa4i—MCCIIeJOBAHHE BIMAHAS TEILIONPOBOIHOCTH B CTEHKE HA €CTECTBEH-
HYyIO KOHBEKIHIO B NOJIOCTH. PaccMaTpUBAIOTCA TPH Pa3JIMYHBIX MOJE/H TEIUIONPOBOIHOCTH CTEHKH : (i)
TIOJIHOCTbIO CONPSDKEHHBI Clly4ai, Koraa TeMIONpPOBOIHOCTh B TOJICTOR BEPTHKAJILHOM CTEHKE NPEANo-
naraeTes AByMEpHOIA; (ii) oxHOMepHas MOIesb TEIJIONPOBOJHOCTH B CTEHKE C MIEPEHOCOM TEIJIA TOJIBKO
B TFOPH3OHTAJbLHOM HAMpaBjieHuH; W (iii) MOAMOHUNPOBAHHEIA NapaMETPHYECKHH MOAX0[, Npeanoa-
ralollMii OJHOPOAHOCTh TEMIEPATYPHl Ha IPAaHMLE pa3zena Teepioe Teno-xuakocTs. Mccnemosanus
nposoasTcs B npubianxennn Byccunecka s Bosayxa ¢ uuciaom IMpannrns 0,7 u wucnamn I'pacroda s
nuanasone ot 103 no 107, Ins Gr > 10° pacnpenesieHne TeMNepaTypbl B CTEHKE SABJIAETCS CYLUECTBEHHO
IBYMEPHBIM, a TEMIEPaTypa HA TPaHHUlC pa3jeNa TBEPAOE TENO-XHIKOCTb CYLUECTBEHHO HEOXHOPOX-
Hoit. M3-3a 0TMe4eHHOM HEONHOPOAHOCTH PEXHUM TeYEHHS B MOJIOCTH TPAaHCHOPMHPYETCH HAa aCHMMET-
pHUuHbIA. B uccleflyeMOM AMaria3oHe NapaMeTpoB BCE TPH MOJENH NMPEACKA3bIBAIOT MOYTH OIHO K TO Xe
3HAYEHHE CYMMAapHOTo Ko3¢duuneHTa TenaoobMeHa.



