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Abstract-Steady, laminar, natural convection flow in a square enclosure has been analysed numerically. 
One vertical wall of the enclosure is thick, with a finite thermal conductivity, while the other three walls 
are taken to be of zero thickness. The problem is conjugate and the main focus of the study is on examining 
the effect of conduction in the wall on the natural convection flow in the enclosure. Three separate models 
to account for the wall conduction are investigated : (i) the complete conjugate case in which conduction 
in the thick vertical wall is assumed to be fully two-dimensional ; (ii) a one-dimensional model in which 
conduction in the wall is assumed to be in the horizontal direction only; and (iii) a lumped parameter 
approach which assumes the solid-fluid interface temperature to be uniform. A Boussinesq fluid with 
Prandtl number of 0.7 (air) and Grashof numbers ranging from lo3 to lo7 are considered. For Grashof 
number > 105, the temperature distribution in the wall shows significant two-dimensional effects and the 
solid-fluid interface temperature is found to be quite non-uniform. This non-uniformity tends to make the 
flow pattern in the enclosure asymmetric. In the parametric range investigated, all three models predict 

nearly the same value for the overall heat transfer. 

INTRODUCTION 

The problem analysed 
Steady, laminar, natural convection flow in a square 

enclosure has been analysed. The configuration is 
sketched in Fig. 1. Three walls of the enclosure are 
assumed to be of zero thickness while the fourth, the 
right vertical wall, has a thickness t. The horizontal 
walls are insulated, the left vertical face is at a uniform 
temperature T,, and the right edge is isothermal at a 
temperature TH. The problem is conjugate and the 
goal of the analysis is to solve numerically for the 
natural convection flow in the enclosure taking 
account of the conduction in the right vertical wall. 

Motivation 
Natural convection in enclosures is a topic of con- 

siderable engineering interest. Applications range 
from thermal design of buildings, to cryogenic 
storage, furnace design, nuclear reactor design, and 
others. Several comprehensive reviews of the literature 
have been published [l-3]. 

The problem of natural convection flow in a rec- 
tangular enclosure with uniform temperature at the 
side walls and insulated top and bottom walls has 
been the subject of many earlier studies. Elder [4, 51 
performed a comprehensive set of flow visualization 
experiments which delineated the flow regimes for this 
geometry. Early numerical studies were published by 

*Present address: CHAM of North America, Inc., 
1525-A Sparkman Drive, Huntsville, AL 35805, U.S.A. 

Wilkes [6], followed by Gershuni et al. [7] and de 
Vahl Davis [8]. Recently, Jones [9] has published a 
very detailed comparison of experimental and numeri- 
cal results ; in all cases, the agreement between the two 
is very good, validating the numerical methods of 
studying this type of problem. 

In the studies cited above, the walls of the enclosure 
are assumed to be of zero thickness and conduction 
in the walls is not accounted for. However, in many 
practical situations, especially those concerned with 
the design of thermal insulation, conduction in the 
walls can have an important effect on the natural 
convection flow in the enclosure ; it is this recognition 
that constitutes the motivation for the present study. 

Literature on conjugate problems is sparse. The 
configuration discussed in this paper has been studied 
before by Lauriat [lo] ; in fact, in terms of Lauriat’s 
work, the present study corresponds to A = 1, N, = 0, 
and Bi = co. The essential differences in the two inves- 
tigations are : (i) the one-dimensional wall conduction 
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FIG. 1. Schematics of the problem analysed. 
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CQ 
specific heat of the fluid U, I’ dimensionless velocity components, 

Gr Grashof number, g/3( TH - TC)L3/v2 ul(v/L), ul(vlL) 
g acceleration due to gravity u, v velocity components 
k thermal conductivity of the fluid %Y coordinates 

k, thermal conductivity of the solid wall X, Y dimensionless coordinates, x/L, y/L. 
L length of side of the square enclosure 
NU overall Nusselt number, Q/k( TH - T,) Greek symbols 
P dimensionless pressure, (p + pgy)/p(v/L)* /I coefficient of thermal expansion of the 
Pr Prandtl number of the fluid, pc,/k fluid 

P pressure tl dimensionless temperature, 

Q total heat transfer across the enclosure (T- Tc)I(Tn - Tc) 
4 local heat flux p viscosity of the fluid 
t thickness of the solid wall V kinematic viscosity of the fluid 
T temperature P density of the fluid 

TC temperature of the left vertical side ti max maximum value of the streamfunction in 

T” temperature of the right vertical side the enclosure. 

NOMENCLATURE 

1 
model has been included in the present work for com- 
parison ; (ii) the variation of local heat flux at the 
solid-fluid interface has been examined ; and (iii) a 
higher range of the Grashof number was investigated. 

The effect of wall conduction on natural convection 
flow in an enclosure has also been examined by 
Balvanz and Kuehn [I 11. They considered the case 
of volumetric heat generation within the wall, and the 
outer face of the thick wall was taken to be insulated. 
Larson and Viskanta [12] accounted for wall con- 
duction effects in an enclosed fire problem. Only one- 
dimensional wall conduction was considered. In both 
of these studies, the problem definition and boundary 
conditions are different from those investigated in the 
present study. 

More recently, Kim and Viskanta [13-l 51 have 
carried out a comprehensive experimental and numerical 
study of natural convection flow in an enclosure with 
conducting walls. They examined the case in which 
all four walls are conducting. Hence, their problem 
is different than the one investigated in this paper. In 
the present study, the choice to restrict to only one 
thick wall is intentional, the goal being to examine a 
simple effect in isolation ; the numerical procedure 
used can, however, as easily handle the case in which 
all four walls are conducting. 

The effect of wall conduction on natural convection 
in slots has also been examined by Mallinson [16]. 
Mallinson’s study involves a three-dimensional slot, 
with the wallparaZ[el to the plane of Fig. 1 being thick. 
In addition, the periodic boundary conditions are 
intended to simulate the case of a series of slots sep- 
arated by thick wall partitions. 

ANALYSIS 

Assumptions 
The flow in the enclosure is assumed to be two- 

dimensional with velocity components u and v along 

the x and y coordinates, respectively (see Fig. 1). All 
fluid properties are assumed constant, and the fluid is 
considered to be incompressible except for the buoy- 
ancy term which is computed using the Boussinesq- 

type equation of state. Viscous dissipation and com- 
pression work are neglected in the energy equation 
and so are the radiation effects. 

Equations for thefluidpart of the enclosure 
In terms of dimensionless variables which are 

defined in the nomenclature, the flow is governed by 
the following set of conservation equations 

au av 
~+~y=o 

$;)+ v(g)= -&+WJ (2) 

U(g)+ V($= -&+GrB+V’V (3) 

U(E) + v(g) = ($%. (4) 

As for the boundary conditions, both the velocity 
components are zero at the walls. The dimensionless 
temperature 0 is equal to zero at the left vertical wall 
while %/a Y = 0 at the top and the bottom horizontal 
walls. 

The complete conjugate case with two-dimensional wall 
conduction 

In a complete analysis, the two-dimensional tem- 
perature distribution in the wall is governed by the 
heat conduction equation which, in dimensionless 
form, reads 

v2e = 0. (5) 

At the right vertical edge, 0 = 1. At the solid-fluid 
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interface, the temperature and the heat flux must be 
continuous. The latter condition is mathematically 

expressed as 

(g)flu,d = !$(g)wa,, at X= 1. (6) 

Equations (l)-(4), which determine the flow, are, 
therefore, coupled to equations (5) and (6) which de- 
scribe the two-dimensional conduction in the wall. 

One-dimensional wall conduction model 

In the more commonly used one-dimensional wall 
conduction model, it is assumed that the heat flow in 
the wall is in the horizontal (x) direction only. This 
treatment can be mathematically described by saying 
-k(aT/a~),,~, = k,(T- TH)/t, at the solid-fluid inter- 
face. In dimensionless terms this reads 

-(g)fluid=r$)(l-O) atX= 1. (7) 

The advantage of using this model is that one does 
not have to solve any heat conduction equation in the 
wall ; that is, only the flow equations, equations (l)- 
(4), are to be solved, and the effect of wall conduction 
is implied through the boundary condition expressed 
by equation (7) which is imposed at X = 1. This can 
provide a considerable saving in the computational 
effort. 

Lumpedparameter approach 
The lumped parameter method* may be used to 

estimate the total heat transfer across the enclosure. 
Implicit in this treatment is the assumption that the 
solid-fluid interface is at a uniform temperature T,. If 
this is the case, then the fluid is driven by an effective 
Grashof number Gr, given by 

Gr &m-l-w3 
C V2 

= Gr@ = Gr ((: 1:)). (8) 
H c 

Let Q represent the total heat flux across the enclos- 
ure. Then : 

Q = h,L(T, - T,) (9) 

where hC is obtained using a standard correlation 

for an enclosure consisting of two isothermal vertical 
walls. A typical expression would be 

Nut = y = a(Gr,)b = aGrb6f (10) 

a and b being the constants in the correlation used. 
The same heat flux Q must flow across the solid 

wall. Hence 

Q = y(r,,-r,). (11) 

*Also referred to as the thermal resistance model [lo]. 

Eliminating Ti between equations (9) and (1 l), the 
overall Nusselt number Nu can be obtained as 

(Q/L) L 
NU=(TH-TC)k= 

I/(&+&). (12) 

Also, eliminating Q between equations (9) and (11) it 
follows that 

Bi = l/[l+Nu&)]. (13) 

Thus, the coupled equations (13) and (10) must be 
solved iteratively to obtain Nut and Bi. Once Nut has 
been obtained, the overall Nusselt number can be 
calculated from equation (12). 

The constants a and b to be used in correlation (10) 
are available in the literature. However, for numerical 
consistency, the values used were those which were 

generated by the present computations for the limiting 
case of the standard enclosure. These values are: 
a = 0.1556 and b = 0.2843. 

Implications of the three wall conduction models 
The difference between the three conduction models 

can be looked at in the following manner. Imagine the 
wall has different thermal conductivity (k,), and (k,), 
in the x and y directions, respectively. Then, the impli- 
cations of the three wall conduction models are : 

two-dimensional model (U = (k,), = kW 

one-dimensional model (M, = k, ; %A’ = 0 

lumped parameter approach (k,), = k,; (k,Jy = CO. 

The difference in the results obtained by the three 
models can be interpreted well in terms of the above 

implications. 

Parameters of the problem 

The complete conjugate problem, with two-dimen- 
sional wall conduction, is governed by four dimen- 
sionless parameters. These are the Grashof number 
Gr, the Prandtl number Pr, the dimensionless wall 
thickness t/L and the conductivity ratio k,/k. The 
Prandtl number was kept fixed as 0.7 corresponding 
to air. The Grashof number was varied from lo3 to 
107. 

For the one-dimensional and the lumped parameter 
wall conduction models, t/L and k,/k do not appear 
as two separate parameters ; instead, they appear only 
as one combination k,L/kt. It is expected, therefore, 
that even for the complete conjugate analysis, an 
appropriate parameter should be k,L/kt. The com- 
puted results support this choice ; it is indeed found 
that for fixed (k,L/kt), the results of even the two- 
dimensional wall conduction model depend very 
little on t/L. The following values were considered: 
k,L/kt = 5, 25, 50 and 00, and t/L = 0.2 and 0.4. 
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COMPUTATIONAL PROCEDURE 

The governing equations were solved numerically 
using the control-volume-based finite-difference 
method described by Patankar [17]. The application 
of the method to handle conjugate problems has been 
discussed in ref. [I 71 and, at greater length, in ref. [ 181. 
The basic idea is to solve for the flow in the enclosure 
and the conduction in the wall simultaneously. This 
is achieved by taking the computational domain to 
include both the fluid and the solid regions. In the 
solid, the viscosity is assigned a very large value which 
makes the velocity zero there. The grid layout is such 
that the solid-fluid interface forms a control volume 
face for the neighboring grid points. Correct 
expressions for the heat flux (or, for the shear stress) 
across this interface are obtained by using the har- 
monic mean of the solid and fluid thermal con- 
ductivities (or, the harmonic mean of the viscosities). 

An exponential differencing scheme is employed in 
the fluid. This reduces to the central difference type 
scheme in the solid where all the velocities are zero. 
Because of the nonlinearity of the momentum equa- 
tions, the velocity-pressure coupling, and the coupling 
between the Bow and the energy equation, an iterative 
solution scheme is necessary. In the present study the 
SIMPLER algorithm [ 171 was employed. 

To obtain convergence at very high Grashof num- 
bers, special under-relaxation procedures are necess- 

ary. In the present study, the inertial relaxation 
method of Ideriah [19] was used. A detailed summary 
of the effect of various underrelaxation parameters on 

the number of iterations required for convergence has 
been provided in ref. [20]. 

0.211/,,,L2/v, 0.3$,,,Lz/v, etc. and different isotherms 
correspond to B = 0, 0.1, 0.2, . , 1. 

Figure 2 shows representative streamlines and iso- 
therms for a Grashof number of 10’. Panel (a) rep- 
resents a poorly conducting wall and panel (b) rep- 
resents an infinitely conducting wall, i.e. the standard 
enclosure with two isothermal vertical walls. The 
results of panel (a) correspond to a two-dimensional 
wall conduction model. The circulation pattern is 
counterclockwise, with flow downward at the cold left 
wall and upward at the hot right wall. Because of the 
temperature drop in the wall, the effective temperature 
difference driving the flow in panel (a) is less than that 
for panel (b); as a result, the strength of the flow, i.e. 

it+ max 1 is less for case (a) than for case (b). 
The temperature profile across the solid-fluid inter- 

face is quite non-uniform. This non-uniformity has a 
noticeable effect on the flow field ; the flow in panel 
(a) is asymmetric whereas the flow for the isothermal 
walls shown in panel (b) is perfectly symmetric. 

Figure 3 shows plots for the highest Grashof num- 

ber studied, Gr = 107. A comparison is made for the 
streamlines and isotherms obtained using the two- 
dimensional and one-dimensional wall conduction 
models. As can be seen, the results for the two cases 
are nearly identical, supporting the conclusion that 
the one-dimensional approximation is a good sub- 
stitute for the two-dimensional conjugate analysis. 

Figure 4 also corresponds to Gr = 10’. The effect 

of increasing the wall conductivity is examined. As 
expected, the two-dimensional wall effects diminish 

A 40 x 30 grid was used in all the computations. Of 
the 40 vertical grid lines, a disproportionate share of 
10 grid lines were placed in the solid wall. The grid 
was packed close to the solid walls and the solid-fluid 
interface so that the boundary layer could be well 
resolved. The grid layout was chosen after a number 
of trial numerical experiments, the results of which 
were summarized in ref. [20]. For the case of an infi- 
nitely conducting wall, i.e. (k,L/kt) = co, the grid lay- 

out which was finally chosen, yields an overall Nusselt 
number, which is within 2% of Caton’s empirical 
correlation* in the range ( lo3 < Gr < 106) and within 
6% at Gr = 107. 

(a) 

RESULTS 

Streamline and isotherm plots 
An appreciation for the nature of the flow and the 

temperature fields can be obtained by examining plots 
of the streamlines and isotherms. In all the figures 
that follow, the maximum value of the dimensionless 
streamfunction t,b,,,L*/v is given in the figure captions. 
Different streamlines correspond to 0, 0.1 t+b,_L’/v, 

*Nu = 0.15(Gr)02Y. 

FIG. 2. Flow and temperature fields for Gr = 10’ and 
f/L = 0.2. Panel (a) corresponds to two-dimensional 
wall conduction model with (k,L/kt) = 5; and panel (b) 
is for isothermal walls [(k,L/kt) = co]. The maximum 
streamfunction, ~,,,L*Y, is 10.4 for panel (a) and 12.6 for 

panel (b). 

Streamline Plot 

(b) 

Isotherm Plot 
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Streamline Plot 

(4 (b) 

Isotherm Plot Isotherm Plot 

FIG. 3. Flow and temperature fields for Gr = IO’, 
(k,L/kt) = 5 and t/L = 0.2. Panel (a) two-dimensional wall 
conduction model; I+&,L*/v = 26.7. Panel (b) one-dimen- 

sional wall conduction model ; $,,,L*/v = 26.7. 

FIG. 5. Effect of t/L on the flow field. The plots correspond 
to Gr = lo6 and are for two-dimensional wall conduction 
model. The conductance ratio, (k,L/kt) = 5. Panel (a) cor- 
responds to t/L = 0.2, and panel (b) to t/L = 0.4. The 
maximum streamfunction aj,,xL2/v = 10.4 for panel (a) and 

(compare with Fig. 3, panel a) as the wall conductivity 
increases, and the flow tends to become more sym- 
metric. 

Finally, Fig. 5 has been prepared to examine the 
effect of r/L for a fixed value of (k,L/kr). The wall 
conduction model is, of course, two-dimensional. 

(a) 

Streamline Plot 

(b) 

Isotherm Plot 

FIG. 4. Flow and temperature fields for Gr = IO’ and 
f/L = 0.2. Panel (a) is for two-~mension~ wail conduction 
model with (~~~/~~) = 25, and panel (b) is for isothermal 
walls [(k,,Ljkt) = co]. The maximum streamfunction, 

~,,,L2/v is 33.7 for panel (a) and 40.6 for panel (b). 

Streamline Plot 

10.3 for panel (b). 

There are only slight differences in the streamline and 
isotherm plots for the two cases supporting the choice 
of (k,L/kt) as the appropriate non-dimensional par- 
ameter for this problem. This conclusion was typical 
of all the parametric cases studied in this investigation. 

Temperature variation at the solid-jluid interface 
The variation of the temperature at the solid-fluid 

interface is presented in Fig. 6. The solid curves cor- 
respond to the predictions of two- and one-dimen- 
sional wall conduction models; the results for these 
cases were too close to be resolved on the scale of 
Fig. 6. The dashed curves correspond to the uniform 
interface temperature as predicted by the lumped par- 
ameter analysis. For the two-dimensional wall con- 
duction model, with a prescribed (k&kt), the results 
co~esponding to t/L = 0.2 and t/L = 0.4 were found 
to be very close ; hence, the solid curves in Fig. 6 
represent both the t/L values. 

Everything else remaining fixed, the effect of reduc- 
ing &L/h) is to decrease the interface temperature. 
This is expected ; a reduction of (k,L,%t) implies a 
poorly conducting wall across which a greater tem- 
perature drop must occur. 

For the conjugate case, both one-dimensional and 
two-dimensional, the interface temperature increases 
with the vertical distance. This is expected (recall Fig. 
1 and the streamline plots of Figs. 2-5). The counter- 
clockwise rotating fluid becomes cold as it flows down 
past the left wall, and hence, it impinges at the bottom 
end of the right wall at a lower temperature making 
the interface temperature low there ; as the fluid rises 
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t 

- two-d model wth 
t/L = 0.2 and 0.4 

0.25 and one-d model 

----- lumped parameter approach 

0.00 1 I I I I 
0.00 0 25 0 50 0 75 1.00 

Y/L 

I Gr = lo5 
0.25 

t 
0.00 1 0 I I I 

0.00 0 25 0.50 0.75 1.00 

Y/L 

._“_ - =5 

Gr=106 
kt !& 025-c-- 

o~ooOL4d7k&- 1.00 o~ooo~o 
Y/L Y/L 

FIG. 6. Temperature variation at the solid-fluid interface. 

up against the interface gaining heat from the wall, 

the temperature, expectedly, increases. 
The uniform temperature at the interface as pre- 

dicted by the lumped parameter approach can be 
understood, as discussed earlier, in terms of an implied 
infinite conductivity in the y direction. This uniform 
temperature appears, from Fig. 6, to be ‘some sort of 
an average’ of the non-uniform interface temperature 
predicted by the complete conjugate analysis ; it is 
higher over the bottom half of the interface and lower 

in the upper half. 

Variation of the heatpux at the solid-fluid interface 
The variation of the local heat flux at the solid-fluid 

interface is plotted in Fig. 7. The results correspond 
to the two-dimensional wall conduction model. 
Again, the results for t/L = 0.2 and t/L = 0.4 for a 
fixed value of (k,L/kt), were too close to be resolved 
on the scale of Fig. 7. 

The decrease in the local heat flux with increasing 
vertical distance is expected ; it is a consequence of: 
(i) growing boundary-layer thickness at the solid-fluid 
interface as y increases, and (ii) increasing fluid tem- 
perature as the fluid moves up along the wall. The 
small decrease in heat flux with decreasing y near 
y = 0 is a local corner effect. 

Comparing Figs. 6 and 7 it can be noted that cases 
involving a non-uniform interface temperature lead 
to a uniform interface flux and vice versa. 

A comparison of the interface heat flux as predicted 
by the different wall conduction models is presented 
in Fig. 8. The results of the lumped parameter case 
correspond to an enclosure which is driven by a 
Grashof number, Gr, with an imposed temperature 
0 = 0 at the left wall and B = Bi at the right wall; 
0, being, of course, determined by the lumped par- 
ameter analysis. Compared to a conjugate analysis, 
the lumped parameter approach predicts a higher 
heat flux in the lower portion of the interface and a 
lower heat flux in the upper portion. This difference 
can be understood from Fig. 6 as being due to the 
predicted interface temperature, which is higher for 
the lumped parameter case in the bottom portion 
of the interface, and lower in the upper part. 

The difference between the two-dimensional and 
the one-dimensional conjugate analyses lies in the fact 
that the former permits heat conduction in the wall in 
they direction whereas the latter does not. As already 
noted, the temperature in the wall is increasing in the 
y direction. Hence, in a two-dimensional model, there 
must be a heat flow in the wall in the negative y 
direction which is expected to add onto and increase 
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2.00 - 10.00 - 
Gr = lo3 Gr=105 

1.50 - 

kt 

20.00 40.00 

Gr = 10’ Gr=lO’ 

FIG. 7. Variation of the local heat flux at the solid-fluid interface. Results of the two-dimensional wall 
conduction model. 

the interface flux near the bottom of the interface. As 
a result, it is expected that the local heat flux predicted 
by the two-dimensional model should be higher than 
that predicted by the one-dimensional model in the 
lower part of the interface, and smaller in the upper 
part. This is precisely what is predicted by the results 
shown in Fig. 8. The actual magnitude of the differ- 
ence is, however, small. 

Overall heat transfer results 
The main quantity of practical interest is the total 

heat transfer Q across the enclosure. The total heat 
transfer may be expressed in terms of the average 
Nusselt number, given by 

Q/L L Q 
N” = (T”_TC) k = k(T,-T,)’ (14) 

- two-dlmensional model 

---.-------- one-dimensional model 

---- lumped parameter approach 

NU 
1, 

(102 
- two-d model wdh t/L = 0.2 

and t/L = 0.4, and one-d model 
B 

----- 
6 

lumped paramefer ap,,roach 

4 

Y/L GR 

FIG. 8. Comparison of the local heat flux at the solid-fluid FIG. 9. Variation of the overall Nusselt number with Grashof 
interface as predicted by different models ; Gr = 106. number. 
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Table 1. Variation of the overall Nusselt number 

Gr 
kL 
& 

Two-dimensional wall conduction 
t/L = 0.2 t/L = 0.4 

One-dimensional 
wall conduction 

Lumped 
parameter 

10’ 

IO5 

10" 

5x lo6 

10’ 

5 0.87 0.87 0.87 0.84 
25 1.02 1.02 1.02 1.01 
50 1.04 1.04 1.04 1.04 
co 1.06 1.06 1.06 1.07 

5 2.08 2.08 2.08 2.05 
25 3.42 3.41 3.41 3.36 
50 3.72 3.71 3.71 3.67 
co 4.08 4.08 4.08 4.05 

5 2.87 2.87 2.87 2.77 
25 5.89 5.88 5.89 5.65 
50 6.81 6.80 6.81 6.56 
cc 7.99 7.99 7.99 7.86 

5 3.35 3.35 3.35 3.25 
25 8.07 8.06 8.07 7.76 
50 9.86 9.85 9.85 9.53 
co 12.50 12.50 12.50 12.52 

5 3.53 3.53 3.53 3.43 
25 9.08 9.06 9.08 8.76 
50 11.39 11.38 11.39 11.07 
cc 15.09 15.09 15.09 15.29 

For the one-dimensional and two-dimensional wall 
conduction models, Nu is obtained by the numerical 
integration of the local heat flux values ; for the 

lumped parameter approach, Nu is obtained using 
equation (12). 

Recall Fig. 8 in which the variation of local heat 
flux at the interface has been plotted. The overall 
Nusselt number Nu is merely the integral of the local 
heat flux with y (area under the curves). As can be 

seen, though the different models predict different 
local heat flux values, there is a trade-off in the integral 
sense-i.e. models which predict smaller values of the 
heat flux in the lower part of the interface yield higher 
values in the upper part and vice versa. Therefore, it 
may be expected that overall Nusselt number Nu 
should be close for the three different models. This 
expectation is confirmed by Fig. 9 in which the vari- 
ation of Nu with Gr has been plotted. The solid curves 
represent the results of the two-dimensional model 
with t/L = 0.2 and t/L = 0.4 and the one-dimensional 
model (the differences being too small to be resolved 
on the scale of Fig. 9) and the dashed curves cor- 
respond to the lumped parameter approach. The 
numerical values of Nu are also listed in Table 1. As 
may be noted, the overall Nusselt number is predicted 
quite accurately by the one-dimensional model. In 
comparison, the lumped parameter model gives a 
slight under-prediction, but the difference is small 
(+3Jl%).* 

These overall Nusselt number predictions provide 

* The reader is warned that in the earlier version of this 
paper [21] the Gr = 10’ results were not fully converged. 

the most important result of the present study; it is 
interesting to find that despite their different physical 
implications, the overall heat transfer values are pre- 

dicted quite well by the three different wall conduction 
models. 

Consider the case of k,L/kt = co in Table 1. The 
values listed for the two-dimensional and one-dimen- 

sional models are those which were obtained by 
the numerical computations. From these values, a 
Nu N Gr correlation was obtained using the least- 
squares fit method. The correlation so obtained gave 
Nu = 0.1556 Gr0.*843. This correlation was then used 
to process the lumped parameter analysis. It is for this 
reason that the Nu values for k,L/kt = co case are 
slightly different for the lumped model as compared 
to the one-dimensional and two-dimensional models, 
i.e. the difference is attributed to process of fitting the 
correlation. 

It would have been desirable to develop a cor- 
relation for Nu as a function of Gr, kwlk and t/L, 
etc. This has not been done since the lumped model 

analysis agrees so well with the results of the complete 
conjugate case. 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK 

The present paper has dealt with a very basic 
conjugate natural convection heat transfer problem. 
Three different models to account for wall conduction 
have been examined: (i) the complete two-dimen- 
sional conjugate analysis ; (ii) the one-dimensional 
wall conduction model ; and (iii) the ‘zeroth’-order 
lumped parameter approach. Results show that for 
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Gr > lo’, the temperature distribution in the wall is 
quite two-dimensional, and the solid-fluid interface 
temperature is quite non-uniform. For the parametric 9. 
range investigated, the overall heat transfer results of 
the three models are found to be quite close despite 10. 
the different physical implications of these models. 
The local details predicted by the one-dimensional 
model are in close agreement with those of the two- 11. 
dimensional model. Hence, the one-dimensional and 
lumped parameter network approaches are viable, 
quick, and economical alternatives to a complete two- 
dimensional analysis. 

This study can now be extended to account for 12. 
conduction in more than one wall. Again, the focus 
must be on comparing and identifying simpler one- 
dimensional and zero-dimensional type models which 13. 
permit computation of important quantities of engin- 
eering interest more economically. Extension to three- 
dimensional enclosures and other geometries would 14. 
be valuable, and so would be transient studies 
especially those which delineate the effect of wall con- 
duction on flow stability. 

15. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

16. 
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EFFET DE LA CONDUCTION DANS UNE DES PAROIS VERTICALES 

RCnmk-On ttudie numeriquement l’ecoulement de convection naturelle stationnaire, laminaire dans une 
enceinte Carrie. Une paroi verticale est epaisse, avec une conductivite thermique finie, tandis que les trois 
autres sont d’tpaisseur nulle. Le probleme est conjugue et l’attention est principalement port&e sur l’effet 
de la conduction dans la paroi sur la convection dans l’enceinte. On Btudie trois modeles &pares : (i) le cas 
conjugui complet dans lequel la conduction dans la paroi epaisse est supposee bidimensionnelle ; (ii) un 
modele monodimensionnel dans lequel la conduction dans la paroi est supposte dtre dans la direction 
horizontale seule ; (iii) une approche qui suppose que la temperature de l’interface solide-fluide est uniforme. 
Un fluide de Boussinesq avec un nombre de Prandtl &gal a 0,7 (air) est itudie pour des nombres de Grashof 
allant de 10’ a 10’. Pour des nombres de Grashof > 105, la distribution de temperature dans la paroi montre 
des effets bidimensionnels significatifs et la temperature d’interface solidefluide est non uniforme. Cette 
non uniformite tend a rendre asymetrique la configuration d’ecoulement dans la cavite. Dans le domaine 

ttudie, les trois modeles predisent a peu pres la mbme valeur pour le transfert thermique global. 
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NATURLICHE KONVEKTION IN EINEM RECHTECKIGEN HOHLRAUM 

Zusammenfassung-Es ist die stationare, laminare, natiirliche Konvektionsstriimung in einer rechteckigen 
Kammer numerisch untersucht worden. Eine der vertikalen Kammerwlnde ist vergleichsweise dick bei 
endlicher Warmeleitfahigkeit, wlhrend die Wandstirken der anderen drei Kammerwande vernachllssigbar 
sind. Das Hauptaugenmerk der Studie liegt auf der Untersuchung der Auswirkungen, die Leitungseffekte 
in der Wand auf Konvektionsstromungen in der Kammer haben. Drei unterschiedliche Modelle werden 
vorgestellt urn Leitungsvorgange in der Wand zu untersuchen: (1) der Fall, bei dem vollstlndige zwei- 
dimensionale Warmeleitung in der dicken senkrechten Wand angenommen wird, (2) ein eindimensionales 
Modell, bei dem Leitung nur in horizontaler Richtung angenommen wird, (3) eine Untersuchung mit 
konzentrierten Parametern bei der gleichmHl3ige Grenzflachentemperaturen zwischen Feststoff und Fluid 
vorausgesetzt werden. Ein Boussinesq-Fluid mit einer Prandtl-Zahl von 0,7 (Luft) und Grashof-Zahlen im 
Bereich von lo3 bis 10’ wurde verwendet. Bei Grashof-Zahlen grol3er als lo5 traten typische zwei-dimen- 
sionale Temperaturverteilungen in der Wand auf, bei der die Grenzflachentemperatur zwischen Festkiirper 
und Fluid recht uneinheitlich war. Diese Ungleichformigkeit ruft wohl die asymmetrische Striimungsform 
in dem Hohlraum hervor. Im untersuchten Parameterbereich liefern alle drei Modelle nahezu den gleichen 

Wert fiir den Gesamtwirmelbergang. 

COfIPJDKEHHA5I l-IOCTAHOBKA 3AAAqH 0 ECTECTBEHHOn KOHBEKHMM B 
I-IPRMOYFOJIbHOM 3AMKHYTOM 06’6EME: 3QQEKT TEl-IJIOIlPOBO~HOCTW OfiHOfi 

113 BEPTMKAJIbHbIX CTEHOK 

hlHOTalUW--YkiCneHHO a"aJlH3HpyeTCR yCTOi+WBaK naMHHapHa5, eCTeCTBeHHaR KOHBCKL,RII B IIpRMOy- 

ronbnobr o6aeMe. Ontia seprnxanbriaa c-renxa nonocrn roncras, nMeH)tnaa Kone~noe 3na’lenne renno- 
IIpOBOL,HOCTU, B TO BpeMn KPK TOnUUHbI Tpex OCTanbHbIX CWiTaIOTCII HyneBbIMH. &HOBHaR UeJIb 

CO,,pS~eHHOk IIOCTaHOBKW 3aL,aW-BCCneJ,OBaHUe BJtnRHBaTenJ3OnpOBO~HOCTn BCTeHKe Ha eCTeCTBeH- 
uyto xonnemniro a nonocTki. PaccMaTpesaIoTca TpA pa3nuwb*x Moaenn rennonpoaoanocrn crenkn: (i) 
F,OnHOCTbIOCO~p%KteHHbIiiCnyYai?,KOr~a Te"nO~pOBO~HOCTb B TOJICTOii BepTHKanbHOti CTeHKe”&XnnO- 

naraerca neyhiepsoii; (ii) 0nttoMepnaa Monenb TennonpoBonHocTH B cTeHKe c nepeHocoM Tenna ronbxo 
B rope30HTanbHoM HanpaBneHkui; A (iii) Momi@suepoBaHHbIB napaMeTpevecKsk nonxon, npennona- 

rawuefi 0nHoponHocTb TeiwepaTypbI na rpanaue pa3nena rsepnoe reno-xoinxocrb. Mccnenosamin 
npoeonarcn B npe6ne~etiue 6yccenecxa nnx aosnyxa c qricnobr fIpaenrnn 0,7 A qncnabfn Fpacroaa a 
aaana3oee OT lo'no lo'. Ann Gr > lo5 pacnpenenense TeMnepaTypbI B CTeHKe annaerca CymecTseHHo 

nsyh4epHblhq a Teh4nepaTypa Ha rpawiue pasnena Tsepnoe Teno-xGinKocTb cymecrBees0 HeonHopon- 

Hoi?. M3-3a OTMe'IeHHOii HeOnHOpOnHOCTIl peXWM TeYeHHIl B IIOnOCTU TpaHC+OpMHpyeTCa Ha BCIIMMeT- 

pesHbrk B sccnenyeMoM miana3oHenapaMeTpoB BceTpa MOnenA npencKa3bIsaloTno~TeonHo HTO)K~ 

3Ha'leHHeCyMMapHOrO K03#$HUHeHTa TeIInOO6MeHa. 


